
Watchdog Timers Keep Computer Failures
from Having Catastrophic Results

Digital computers do only what they're told - or what they think they're told. It's
not unheard of for a computer to suddenly latch up or get lost in a program with
potentially catastrophic results if it's controlling a critical process. To minimize
the damage of a computer failure, good designs include a watchdog timer - a
device that monitors host activity and triggers appropriate action if it notices that
the computer isn't functioning as expected. These devices come as low-cost ICs
or modules and are not only easy to integrate into a system, but it's highly
recommended you do so in any control application.

Implementation strategies

 You can interface your system
to a watchdog timer in several
configurations. An easy yet
effective way to detect a computer
fault is by programming one or
more digital output bits to toggle
On/Off continuously, and if that bit
stops at one state longer than a
designated time period, then the
watchdog timer monitoring the
signal assumes a computer fault.
An easy way to hook up a watchdog
in a PC-based system is to add a
digital I/0 board and configure one
of its output lines to toggle the
watchdog.
 When any watchdog detects a
failure, there are three major courses
of action it can take: reset, alarm or
shutdown.
 Reset or an attempt to reset is a
common approach in less-than-
critical applications such as running
a business application or simple
datalogging where a reset can
establish system recovery. In such
cases where a computer fault is
recoverable, the fault and the action
of the watchdog timer are often
transparent to the user. On a PC, for
instance, the watchdog could
activate the reset line (the same as
hitting <ctrl> <alt> .

 When implementing a watchdog
reset, especially in control
applications, examine the overall
impact of the sudden initialization
of the I/O (hot start) and loss of data
in RAM. Consider, for example, the
simple case where a microcontroller
acts as the brain of a toaster oven
and controls temperature and
toasting time. If the computer
latches up and is reset by a
watchdog while toasting a melted-
cheese sandwich, the fact that it was
in the process of toasting and the
elapsed toasting time would likely
be information previously contained
in RAM and might be difficult to
ascertain. Thus, such a design
should also contain circuitry to
monitor the temperature to see if the
oven is already hot when the system
resets, or use a nonvolatile memory
to store timing data.
 Alarming is generally used
along with other watchdog functions
and is common in applications
where a human operator must
determine why a computer fault
occurred and manually clear the
alarm. A good example is a
controller for a hydroelectric power
plant. Regulation of turbine flow
and other parameters likely requires
PID (proportional integral

derivative) algorithms and special
arithmetic functions. Here, a
watchdog alarm should alert a
skilled operator to manually control
the situation until the computer
again comes up to speed. This
action is the most appropriate
because it's unlikely you'd want to
shut down the power plant because
of a computer fault. However, if the
computer is reset with a hot start
such as noted above, it might
initialize variables in the control
algorithms and lose track of phase,
flow and other vital parameters.
 Shutdown in response to a
watchdog signal is common for
critical industrial-control
applications where a computer fault
could have unpredictable results,
and it's generally used in
conjunction with the Alarm
function. Shutdown implies that a
human operator must investigate the
cause of the computer fault and
manually clear it. Note in this mode
that the watchdog should deactivate
devices being controlled, such as
motors or heaters, but not
necessarily the computer.
Depending on the type of equipment

Watchdog timers easily integrate
with Industrial I/O Control Systems

being controlled, it might be wise to
have the watchdog initiate a
predetermined shutdown sequence
to prevent damage to a process or
equipment. Which level of
response you want—reset, alarm or
shutdown—also plays a role in how
you implement the watchdog timer.
Consider, for example, watchdog
ICs that are sometimes included on
function cards for industrial PCs.
These devices might monitor power-
supply voltages and have a toggle
input. When they detect a computer
failure, they simply strobe a Reset
line and don't have any means of
activating an alarm or shutting down
a process. Further, most watchdog
IC designs place the device local to
the system CPU, and because they
don't monitor the control output,
they leave much of the output
hardware unsecured.
 Watchdogs with relay outputs
are better suited to control
applications because they can be
implemented local to the control
outputs. They can provide fault
indication and the correct response
to most failure modes, including
loss of power or control signal. It's
also easy to cascade multiple
watchdogs with relay outputs.
However, these devices are
relatively large and may be costly
for systems that need only low
levels of system integrity.
 When implementing a watchdog
timer, take care when determining
the system output it monitors. You
should decode that signal to at least
the level of the control outputs, if
not beyond. Many control systems
require much less I/O than the
computer is capable of, so you
might be tempted not to perform
address decoding to the highest
possible level. For instance, assume
that a watchdog timer monitors an
output bit mapped at binary address
X111XX00 (where X indicates a
don't care). Because for each one of
those undefined bits you can come
up with an absolute address, the

watchdog—rather than reading just
one address—is toggled by a
number of addresses, specifically
hex $70, $74, $78, $7C, $F0, $F4,
$F8 and $FC. The chances of a
runaway program hitting the one
absolute address that toggles the
watchdog timer and fools it into
thinking everything is functioning
properly is relatively low, but
chances of a false signal to the timer
are greater as you increase the
number of addresses to which it
responds. Thus, it's recommended
that the output to the watchdog

timer be a control output from one
or more data bits of a decoded
address (see Figure 1).

In control applications with more
than one I/O rack, you can increase
system integrity by configuring a
watchdog on an output of each rack
and cascading their outputs. This
approach assures computer control
at each control branch, and thus it
indicates loss of control at any rack
(see Figure 2).
 Another consideration when
implementing watchdogs in control

Figure 1 - Take care when decoding the address that activates the watchdog timer
so that it does not receive erroneously TRUE signals.

Control Computer

I/O Rack #1
WDT #1

I/O
Modules

I/O Rack #2

WDT #2

I/O
Modules

I/O Lines

Other
Devices

Put
Protective
Devices In
Series

Figure 2 - When working with multiple I/O racks, it is a good idea to cascade the
outputs from a watchdog timer located on each rack.

applications is to use an energized
dry contact as the output. One
advantage of this approach is that
loss of power is detected as a fault
condition, and Fail-Open is common
in fault reporting because of
constant continuity.
 Finally, note that some
designers combine watchdogs with
other means of securing a computer.
You can, for instance, make
frequent checksums of memory,
look for bus errors or feed back
control outputs to verify their
presence. The bottom line, though,
is to never design a control
computer without a watchdog timer.

Software aspects

 When setting up a program with
watchdog-timer capability, keep
several things in mind. Foremost,
remember that perhaps the most
useless type of watchdog is one
implemented completely in
software. It should be apparent
even to a casual observer that such
an approach implies that the
microprocessor is alive enough to
run the code section that indicates a
computer fault. Likewise, view with
care any shutdown sequencing
implemented in software if you need
the highest level of system integrity.
 Next, avoid toggling the
watchdog with an address-decode
strobe. As the above example
indicates, software gone astray
might coincidentally hit that address
and convince the watchdog that
everything's satisfactory.
 Next comes the question of not
how to toggle the watchdog output,
but where in the software to do so.
The Main program loop proves the
best place for several reasons. First,
that loop runs continuously and,
based on certain conditions, calls
other tasks or subroutines. Many
situations can arise—such as noise
that inadvertently changes data in
RAM or sends the program

unknown address values—in which
the computer might get stuck in a
subroutine or roam aimlessly
through the address space without
getting back to the main program.
It's not advisable to place code that
toggles the watchdog in an
interrupt-service routine, for
example; even if program control
gets lost in the address space, an
interrupt takes higher priority and
sends program control to the
appropriate servicing routine, which

toggles the timer so that it believes
the system is operating properly.
Upon servicing the interrupt,
though, program control returns
from where it originally left—even
if it's the wrong place. Under such
circumstances you could toggle the
watchdog even though the main
program loop never gets serviced.
 To see an example of how to set
up a watchdog properly, consider
the program in Figure 3, which uses
the ROM BASIC resident on an

REM MAIN PROGRAM LOOP
10 GOSUB 1000 : REM INITIALIZE I/O
20 IF STRT=L THEN GOSUB 2000 : REM CHECK TEMP SWITCH/CONTROL HEATER
30 IF STRT=O THEN XBY(4011H=(XBY(4011H) AND. OBFH) : REM HEAT OFF
40 WDT=ABS(WDT-1) : REM COMPLIMENT LAST WATCHDOG STATE
50 IF WDT=1 THEN XBY(4011H)=(XBY(4011H) .OR. 01H) : REM SET WDT=1
60 IF WDT=0 THEN XBY(4011H)=(SBY(4011H) .AND.FEH) : REM RESET WDT=0
70 GOTO 20

REM INITIALIZATION SUBROUTINE
1000 ONEXT1 3000 : REM INITIALIZE START SWITCH INTERRUPT
1010 XBY(4011H)=OOH : REM INITIALIZE OUTPUTS
1020 WDT=O : STRT=O : TEMP=O : REM INITIALIZE VARIABLES
1030 RETURN

REM HEAT CONTROL
2000 TEMP=XBY(4010H).AND.OFEH : REM CHECK TEMP SWITCH 1=ON O=OFF
2010 REM SET HEATER ON/OFF
2020 IF TEMP=L THEN XBY(4011H)=(XBY(4011H).AND.OFBH): REM OFF
2020 IFTEMP=OTHENXBY(4011H)=(XBY(4011H).OR.02H) : REM ON
2030 RETURN

REM READ START SWITCH
3000 IFXBY(4010H<>OFFH THEN STRT=1 : REM START HEAT CYCLE
3010 TIME=0 : CLOCK1 : ONTIME 55,4000
3020 RETI

REM TIMER INTERRUPT
4000 STRT=0 : CLOCK0 : REM TIMEOUT, STOP HEAT CYCLE
4010 XBY(4011H)=(XBY(4011H).OR. 03H) : REM BEEP
4020 XBY(4011H)=XBY(4011H).AND. 0FCH) : REM STOP BEEP
4030 RETI

 Figure 3 – It is always a good idea to keep commands that service the
 watchdog timer in the main program loop.

Intel microprocessor to control a
toaster oven. An important
command in that chip's command
set is XBY, which is a direct
read/write to a virtual address (such
as RAM, ROM or I/O). Key in the
main loop are lines 50 and 60,
which use XBY to write to an I/O
address, in this case an output line
(address $4011, Bit 0) connected to
the watchdog timer toggle.
 In more detail, the first line of
the program (1000) goes to an
initialization subroutine that sets the
start-switch interrupt and system

variables. Then it moves to Lines
20/30, which check the status of the
start switch. If that switch is On
(STRT=1), program control goes to
the subroutine at Line 2000 to
control the temperature cycle; if the
switch is Off, Line 30 ensures the
heater is Off. Now come Lines 50
and 60 to toggle the watchdog timer
and a loop statement to send
program control to Line 20. When
you hit the start switch, an interrupt
at Line 3000 starts the cycle but sets
an internal timer for 55 seconds and
sets the STRT variable to One. The

program loops until the 55-sec
interval has passed. During that
time, if the computer suffers from
noise, loses track of the program,
and leaves the heating coils on, the
watchdog timer doesn't get strobed
and that device then takes
appropriate action, such as
removing power from the coils.

Reprinted with permission from
Personal Engineering and
Instrumentation News PO Box 430, Rye,
NH 03870 ©PEC INC. 098953-1

Author: Brian H. Breneman, CEO and Chief Design Engineer at Brentek
International, a manufacturer of watchdog timer modules and specialized I/O
modules, including dry contact modules and industrial supervisory modules.

Watchdog Timer sales and support:
Industrial Products Distributing, Inc.
(800) 543-8142
www.brentek.com

http://www.brentek.com/

